Given the equations \( \tan A + \tan B + \tan C = \tan A \tan B \tan C \) and \( A + B + C = \pi \), we aim to find the value of \( \tan A \tan B + \tan B \tan C + \tan C \tan A \).
Utilizing the identity \(\tan(A + B + C) = \tan \pi = 0\), we employ the tangent addition formula:
\(\tan(A + B + C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - (\tan A \tan B + \tan B \tan C + \tan C \tan A)}\)
Substituting the given condition \(\tan A + \tan B + \tan C = \tan A \tan B \tan C\) into the formula yields:
\(0 = \frac{\tan A \tan B \tan C - \tan A \tan B \tan C}{1 - (\tan A \tan B + \tan B \tan C + \tan C \tan A)}\)
This simplifies to:
\(0 = \frac{0}{1 - (\tan A \tan B + \tan B \tan C + \tan C \tan A)}\)
For this equation to hold, the numerator must be zero, which is satisfied. The denominator must be non-zero to avoid an undefined expression:
\(1 - (\tan A \tan B + \tan B \tan C + \tan C \tan A) eq 0\)
Therefore, it follows that \(\tan A \tan B + \tan B \tan C + \tan C \tan A = 1\).
The resultant value is **1**.