Question:medium

If \( \sqrt{\frac{y}{x}} + 4\sqrt{\frac{x}{y}} = 4 \), then \( \frac{dy}{dx} \):

Show Hint

When solving equations with square roots, square both sides and simplify step by step. Use differentiation techniques like the product rule and chain rule to find the derivative accurately.
Updated On: Nov 26, 2025
  • \( xy \)
  • \( \frac{x}{y} \)
  • \( -4 \)
  • \( 4 \)
Hide Solution

The Correct Option is D

Solution and Explanation

The given equation is: \[ \sqrt{\frac{y}{x}} + 4\sqrt{\frac{x}{y}} = 4. \] Step 1: Square both sides.
Squaring both sides yields: \[ \left(\sqrt{\frac{y}{x}} + 4\sqrt{\frac{x}{y}}\right)^2 = 4^2. \] Expanding the left side: \[ \frac{y}{x} + 16 \cdot \frac{x}{y} + 2 \cdot 4 \cdot \sqrt{\frac{y}{x} \cdot \frac{x}{y}} = 16. \] Simplifying: \[ \frac{y}{x} + 16 \cdot \frac{x}{y} + 8 = 16. \] Rearranging the terms: \[ \frac{y}{x} + 16 \cdot \frac{x}{y} = 8. \] Step 2: Eliminate fractions.
Multiply by \( xy \) to clear denominators: \[ y^2 + 16x^2 = 8xy. \] Step 3: Differentiate with respect to \( x \).
Differentiating both sides with respect to \( x \): \[ \frac{d}{dx}(y^2) + \frac{d}{dx}(16x^2) = \frac{d}{dx}(8xy). \] Applying the chain rule: \[ 2y \frac{dy}{dx} + 32x = 8\left(y + x \frac{dy}{dx}\right). \] Simplifying: \[ 2y \frac{dy}{dx} + 32x = 8y + 8x \frac{dy}{dx}. \] Isolating \( \frac{dy}{dx} \) terms: \[ 2y \frac{dy}{dx} - 8x \frac{dy}{dx} = 8y - 32x. \] Factoring out \( \frac{dy}{dx} \): \[ (2y - 8x) \frac{dy}{dx} = 8y - 32x. \] Solving for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{8y - 32x}{2y - 8x}. \] Step 4: Simplify the expression for \( \frac{dy}{dx} \).
Factoring the numerator and denominator: \[ \frac{dy}{dx} = \frac{8(y - 4x)}{2(y - 4x)}. \] Canceling the common factor \( (y - 4x) \): \[ \frac{dy}{dx} = 4. \] Final Answer: \[ \boxed{4} \]
Was this answer helpful?
0