Unit cell volume is type-dependent.
The volume of a cubic unit cell is given by: \[ \text{Volume} = a^3, \] where \( a \) denotes the edge length.
For a simple cubic structure, \( a = 2r \).
For a body-centered cubic (BCC) structure, \( a = \frac{4r}{\sqrt{3}} \).
For a face-centered cubic (FCC) structure, \( a = \frac{4r}{\sqrt{2}} \). Applying the BCC formula: \[ \text{Volume} = a^3 = \left(\frac{4r}{\sqrt{3}}\right)^3 = \frac{64r^3}{3\sqrt{3}}. \]