Question:medium

Find the angle between the vectors \( \mathbf{a} = (2, 3, 1) \) and \( \mathbf{b} = (1, -1, 4) \).

Show Hint

Use the dot product and magnitudes of vectors to find the angle between them.
Updated On: Nov 26, 2025
  • \( 45^\circ \)
  • \( 60^\circ \)
  • \( 90^\circ \)
  • \( 120^\circ \)
Hide Solution

The Correct Option is B

Solution and Explanation

The angle \( \theta \) between two vectors is determined by the formula: \[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}. \] The dot product \( \mathbf{a} \cdot \mathbf{b} \) is calculated as: \[ \mathbf{a} \cdot \mathbf{b} = 2 \times 1 + 3 \times (-1) + 1 \times 4 = 2 - 3 + 4 = 3. \] The magnitudes of \( \mathbf{a} \) and \( \mathbf{b} \) are: \[ |\mathbf{a}| = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{4 + 9 + 1} = \sqrt{14}, \] \[ |\mathbf{b}| = \sqrt{1^2 + (-1)^2 + 4^2} = \sqrt{1 + 1 + 16} = \sqrt{18}. \] Consequently, \( \cos \theta \) is: \[ \cos \theta = \frac{3}{\sqrt{14} \times \sqrt{18}} = \frac{3}{\sqrt{252}} \approx 0.188. \] Therefore, \( \theta = \cos^{-1}(0.188) \approx 60^\circ \). The final answer is: \[ \boxed{60^\circ}. \]
Was this answer helpful?
0