To evaluate \( \int x e^{x^2} \, dx \), employ substitution. Set \( u = x^2 \). Differentiating \( u \) with respect to \( x \) yields \( \frac{du}{dx} = 2x \), so \( du = 2x \, dx \), or \( \frac{1}{2} du = x \, dx \).
Substituting into the integral results in:
\[ \int x e^{x^2} \, dx = \int e^u \cdot \frac{1}{2} \, du \]
This simplifies to:
\[ \frac{1}{2} \int e^u \, du \]
The integral of \( e^u \) with respect to \( u \) is \( e^u + C \). Therefore, the expression becomes:
\[ \frac{1}{2} (e^u + C) = \frac{1}{2} e^u + C \]
Substitute back \( u = x^2 \) to obtain:
\[ \frac{1}{2} e^{x^2} + C \]
The final solution is \( \frac{1}{2} e^{x^2} + C \).
The integral $ \int_0^1 \frac{1}{2 + \sqrt{2e}} \, dx $ is: