To evaluate the integral \( \int \frac{x}{x^2 + 1} \, dx \), we employ the substitution method. Let \( u = x^2 + 1 \). Differentiating, we find \( du = 2x \, dx \), which rearranges to \( x \, dx = \frac{1}{2} du \).
Substituting these into the integral yields:
\[ \int \frac{x}{x^2 + 1} \, dx = \int \frac{1}{2} \cdot \frac{1}{u} \, du \]
This simplifies to:
\[ \frac{1}{2} \int \frac{1}{u} \, du \]
Integrating \( \frac{1}{u} \, du \) gives:
\[ \frac{1}{2} \ln|u| + C \]
Substituting \( u = x^2 + 1 \) back, we obtain:
\[ \frac{1}{2} \ln(x^2 + 1) + C \]
Thus, the integral evaluates to \( \frac{1}{2} \ln(x^2 + 1) + C \).