The de Broglie wavelength \( \lambda \) is calculated using the formula \( \lambda = \frac{h}{mv} \). The given parameters are:
Substituting these values yields:
\( \lambda = \frac{6.626 \times 10^{-34}}{9.11 \times 10^{-31} \times 6 \times 10^6} \)
The denominator is calculated as:
\( 9.11 \times 10^{-31} \times 6 \times 10^6 = 5.466 \times 10^{-24} \)
The de Broglie wavelength is then:
\( \lambda = \frac{6.626 \times 10^{-34}}{5.466 \times 10^{-24}} \approx 1.212 \times 10^{-10} \, \text{m} \)
Therefore, the de Broglie wavelength of the electron is approximately \( 1.2 \times 10^{-10} \, \text{m} \), matching the first provided option.