For an isothermal expansion of an ideal gas, work done is \( W = nRT \ln \left( \frac{V_f}{V_i} \right) \).
Parameters:
- \( W \): work done by the gas
- \( n \): number of moles of the gas
- \( R = 8.31 \, \text{J/mol·K} \): universal gas constant
- \( T = 300 \, \text{K} \): temperature
- \( V_f = 8 \, \text{L} \): final volume
- \( V_i = 2 \, \text{L} \): initial volume
First, determine the number of moles \( n \) using the ideal gas law: \( PV = nRT \).
Substituting given values: \( (2 \times 10^5) \times (2 \times 10^{-3}) = n \times 8.31 \times 300 \).
Thus, \( n = \frac{(2 \times 10^5) \times (2 \times 10^{-3})}{8.31 \times 300} \approx 0.16 \, \text{mol} \).
Next, calculate the work done:
\( W = 0.16 \times 8.31 \times 300 \times \ln \left( \frac{8}{2} \right) \)
\( W = 0.16 \times 8.31 \times 300 \times \ln(4) \)
\( W \approx 7200 \, \text{J} \).
The work done by the gas is \( 7200 \, \text{J} \).