The formula for the speed of transverse waves in a wire is \(v = \sqrt{\frac{T}{\mu}}\). Here, \( T \) represents the tension in the wire, and \( \mu \) denotes the mass per unit length.
Step 1: Substitute the Given Values
The provided values are \( T = 70 \, \text{N} \) and \( \mu = 7.0 \times 10^{-3} \, \text{kg/m} \).
Substituting these into the formula yields:
\[v = \sqrt{\frac{70}{7.0 \times 10^{-3}}}.\]
Step 2: Simplify the Calculation
\[v = \sqrt{\frac{70}{0.007}} = \sqrt{10000}.\]
\[v = 100 \, \text{m/s}.\]
Final Answer:
\[\boxed{100 \, \text{m/s}}\]