\[\text{Rate of change of volume is } \frac{dV}{dt} = 50 \, \text{cm}^3/\text{min}.\]
\[\text{Differentiating the volume formula with respect to time: } \frac{d}{dt} \left( \frac{4}{3} \pi r^3 \right) = 50,\]
\[\text{which simplifies to } 3r^2 \frac{dr}{dt} = \frac{150}{4\pi}, \text{ leading to } \frac{dr}{dt} = \frac{50}{4\pi r^2}.\]
\text{When the radius is } r = 15 \text{ cm}:\[\left( \frac{dr}{dt} \right)_{r = 15} = \frac{50}{4\pi \times 225} = \frac{1}{18\pi} \, \text{cm/min}.\] Final Answer:\[\boxed{\frac{1}{18\pi} \, \text{cm/min}}\]