For a solid sphere undergoing rolling without slipping, total mechanical energy remains constant: \[ \text{Potential Energy} = \text{Translational KE} + \text{Rotational KE} \] At the apex, total energy is given by: \[ E = mgh \] At the base, the total energy is: \[ E = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 \] For a solid sphere, the moment of inertia is \( I = \frac{2}{5}mr^2 \) and the angular velocity is \( \omega = \frac{v}{r} \). Substituting these values: \[ mgh = \frac{1}{2}mv^2 + \frac{1}{2} \cdot \frac{2}{5}mr^2 \cdot \left(\frac{v}{r}\right)^2 = \frac{1}{2}mv^2 + \frac{1}{5}mv^2 = \frac{7}{10}mv^2 \] This simplifies to: \[ mgh = \frac{7}{10}mv^2 \quad \Rightarrow \quad v^2 = \frac{10gh}{7} \] Using the values \( g = 9.8 \, \text{m/s}^2 \) and \( h = 3 \): \[ v^2 = \frac{10 \cdot 9.8 \cdot 3}{7} = \frac{294}{7} = 42 \quad \Rightarrow \quad v = \sqrt{42} \approx 6.48 \, \text{m/s} \] The final velocity calculation is: \[ v = \sqrt{\frac{10gh}{7}} = \sqrt{\frac{10 \cdot 9.8 \cdot 3}{7}} = \sqrt{42} \approx 6.48 \]