Snell's law states that \( n_1 \sin \theta_1 = n_2 \sin \theta_2 \). Given:
- \( n_1 = 1 \) (refractive index of air)
- \( n_2 = 1.33 \) (refractive index of water)
- \( \theta_1 = 30^\circ \) (angle of incidence in air)
Substituting these values into the equation:
\[
1 \times \sin 30^\circ = 1.33 \times \sin \theta_2
\]
Solving for \( \sin \theta_2 \):
\[
\sin \theta_2 = \frac{\sin 30^\circ}{1.33} = \frac{0.5}{1.33} = 0.3759
\]
Therefore, the angle of refraction in water, \( \theta_2 \), is:
\[
\theta_2 = \sin^{-1}(0.3759) = 22.2^\circ
\]
The angle of refraction in water is \( 22.2^\circ \).