The magnetic field \( B \) on the axis of a current-carrying loop is calculated using the formula:
\[
B = \frac{\mu_0 I R^2}{2 (R^2 + x^2)^{3/2}}
\]
Where:
- \( \mu_0 = 4 \pi \times 10^{-7} \, \text{T m/A} \) (permeability of free space)
- \( I = 4 \, \text{A} \) (current)
- \( R = 0.2 \, \text{m} \) (loop radius)
- \( x = 0.2 \, \text{m} \) (axial distance from the center)
Substituting the given values:
\[
B = \frac{4 \pi \times 10^{-7} \times 4 \times (0.2)^2}{2 \left( (0.2)^2 + (0.2)^2 \right)^{3/2}}
\]
Simplification leads to:
\[
B = \frac{4 \pi \times 10^{-7} \times 4 \times 0.04}{2 \left( 0.08 \right)^{3/2}}
\]
\[
B = \frac{4 \pi \times 10^{-7} \times 0.16}{2 \times 0.022627}
\]
\[
B \approx \sqrt{2} \, \text{T}
\]
The resulting magnetic field is approximately \( \sqrt{2} \, \text{T} \).