Step 1: Problem Setup
The mass of a small rod element at distance \( x \) is:
\[\ndm = \rho(x) \, dx = \rho_0 \frac{x^2}{L^2} \, dx\n\]
The center of mass position is:
\[\nx_{\text{cm}} = \frac{\int_0^L x \, dm}{\int_0^L dm}\n\]
Where:
- Numerator: first moment of mass
- Denominator: total mass
Step 2: Total Mass Calculation
The total mass \( M \) is found by integrating \( dm \):
\[\nM = \int_0^L \rho(x) \, dx = \int_0^L \rho_0 \frac{x^2}{L^2} \, dx = \rho_0 \frac{1}{L^2} \int_0^L x^2 \, dx\n\]
The integral of \( x^2 \) from 0 to \( L \) is:
\[\n\int_0^L x^2 \, dx = \frac{L^3}{3}\n\]
Therefore:
\[\nM = \rho_0 \frac{1}{L^2} \cdot \frac{L^3}{3} = \frac{\rho_0 L}{3}\n\]
Step 3: First Moment of Mass Calculation
The first moment of mass is:
\[\n\int_0^L x \, dm = \int_0^L x \rho_0 \frac{x^2}{L^2} \, dx = \rho_0 \frac{1}{L^2} \int_0^L x^3 \, dx\n\]
The integral of \( x^3 \) from 0 to \( L \) is:
\[\n\int_0^L x^3 \, dx = \frac{L^4}{4}\n\]
Therefore:
\[\n\int_0^L x \, dm = \rho_0 \frac{1}{L^2} \cdot \frac{L^4}{4} = \frac{\rho_0 L^2}{4}\n\]
Step 4: Center of Mass Position
Calculate the center of mass:
\[\nx_{\text{cm}} = \frac{\frac{\rho_0 L^2}{4}}{\frac{\rho_0 L}{3}} = \frac{3L}{4}\n\]
Step 5: Conclusion
The center of mass position is \( \frac{3L}{4} \).
Thus, the answer is:
\[\n\boxed{(D)} \, \frac{3L}{4}\n\]