Let the first term of the arithmetic progression be \( a = 11 \), and the common difference be \( d \).
Step 1: Calculate the common difference.
The sum of the first four terms, \( S_4 \), is 56.
\[\nS_4 = 4 \times \frac{2a + 3d}{2} = 56\n\]
Substitute \( a = 11 \):
\[\n4 \times \frac{2(11) + 3d}{2} = 56\n\]
Simplifying:
\[\n4 \times \frac{22 + 3d}{2} = 56\n\]
\[\n2 \times (22 + 3d) = 56\n\]
\[\n44 + 6d = 56\n\]
\[\n6d = 12 \quad \Rightarrow \quad d = 2\n\]
Step 2: Determine the number of terms.
The sum of the last four terms is 112. The last four terms are:
\[\na + (n-4)d, a + (n-3)d, a + (n-2)d, a + (n-1)d\n\]
The sum of the last four terms is:
\[\nS_{\text{last 4}} = 4 \times \frac{2(a + (n-4)d) + 3d}{2} = 112\n\]
Substitute \( a = 11 \) and \( d = 2 \):
\[\n4 \times \frac{2(11 + (n-4)2) + 3(2)}{2} = 112\n\]
Simplifying:
\[\n4 \times \frac{2(11 + 2n - 8) + 6}{2} = 112\n\]
\[\n4 \times \frac{2(2n + 3) + 6}{2} = 112\n\]
\[\n4 \times \frac{4n + 6 + 6}{2} = 112\n\]
\[\n4 \times \frac{4n + 12}{2} = 112\n\]
\[\n2 \times (4n + 12) = 112\n\]
\[\n8n + 24 = 112\n\]
\[\n8n = 88 \quad \Rightarrow \quad n = 11\n\]
Step 3: Conclusion.
Thus, the number of terms is \( \boxed{11} \).