Question:medium

The probability distribution of a random variable is given below: \[\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline X = x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline P(X = x) & 0 & K & 2K & 2K & 3K & K^2 & 2K^2 & 7K^2 + K \\ \hline \end{array}\]

Find \( P(0<X<5) \).

Show Hint

To solve probability distribution problems, always ensure the total probability sums to 1, then solve for unknown constants accordingly.
Updated On: Nov 26, 2025
  • \( \frac{1}{10} \)
  • \( \frac{3}{10} \)
  • \( \frac{8}{10} \)
  • \( \frac{7}{10} \)
Hide Solution

The Correct Option is C

Solution and Explanation

Step 1: Compute Total Probability
The sum of all probabilities equals 1:\[0 + K + 2K + 2K + 3K + K^2 + 2K^2 + (7K^2 + K) = 1\]\[9K + 10K^2 = 1\]\[10K^2 + 9K - 1 = 0\]\[10K^2 + 10K - K - 1 = 0\]\[10K(K + 1) - 1(K + 1) = 0\]\[(K + 1)(10K - 1) = 0\]
Step 2: Solve for \( K \)
\[K = -1, \quad K = \frac{1}{10}\]Since probability cannot be negative, \( K = \frac{1}{10} \).
Step 3: Compute \( P(0<X<5) \)
\[P(0<X<5) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)\]\[= K + 2K + 2K + 3K = 8K\]\[= 8 \times \frac{1}{10} = \frac{8}{10}\]Final Answer: The correct answer is \(\boxed{(c) \frac{8}{10}}\).
Was this answer helpful?
0