Given:
\n Population in 2001 (\(P_1\)) = 52,000
\n Population in 2011 (\(P_2\)) = 76,000
\n Population in 2021 (\(P_3\)) = 1,20,000
\n\nStep 1: Calculate the average annual growth rate using the geometric mean formula:\n\[\nr = \left( \frac{P_2}{P_1} \times \frac{P_3}{P_2} \right)^{\frac{1}{2}} - 1\n\]\nSubstitute the given population figures:\n\[\nr = \left( \frac{76,000}{52,000} \times \frac{1,20,000}{76,000} \right)^{\frac{1}{2}} - 1\n\]\nPerform the calculations:\n\[\nr = \left( 1.4615 \times 1.5789 \right)^{\frac{1}{2}} - 1\n\]\n\[\nr = \left( 2.3086 \right)^{\frac{1}{2}} - 1 = 1.519 - 1 = 0.519\n\]\n\nStep 2: Estimate the population for 2031 using the geometric increase formula:\n\[\nP_{{2031}} = P_3 \times (1 + r)^{10}\n\]\nInsert the known values:\n\[\nP_{{2031}} = 1,20,000 \times (1 + 0.519)^{10}\n\]\nCalculate the estimated population:\n\[\nP_{{2031}} = 1,20,000 \times (1.519)^{10} = 1,20,000 \times 1.957 = 179,000\n\]\n\nThe estimated population for the city in 2031 is 179,000.