Step 1: Overview of the Lyman Series
The Lyman series describes electron transitions in a hydrogen atom from higher energy levels (\( n = 2, 3, 4, \dots \)) to the \( n = 1 \) level. The wavelengths are calculated using the
Rydberg formula:
\[\n\frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)\n\]
Where:
- \( \lambda \) is the wavelength,
- \( R_H \) is the Rydberg constant,
- \( n_1 = 1 \) (Lyman series),
- \( n_2 \) is the higher energy level (2, 3, 4, ...).
Step 2: Determining Maximum and Minimum Wavelengths
1. Minimum Wavelength:
This occurs when \( n_2 \to \infty \) (largest energy difference):
\[\n \frac{1}{\lambda_{\text{min}}} = R_H \left( \frac{1}{1^2} - \frac{1}{\infty^2} \right) = R_H \left( 1 \right)\n \]
Therefore:
\[\n \lambda_{\text{min}} = \frac{1}{R_H}\n \]
2. Maximum Wavelength:
This occurs when \( n_2 = 2 \to n_1 = 1 \):
\[\n \frac{1}{\lambda_{\text{max}}} = R_H \left( \frac{1}{1^2} - \frac{1}{2^2} \right) = R_H \left( 1 - \frac{1}{4} \right) = R_H \left( \frac{3}{4} \right)\n \]
Therefore:
\[\n \lambda_{\text{max}} = \frac{4}{3R_H}\n \]
Step 3: Relating Maximum and Minimum Wavelengths
Given \( \lambda_{\text{min}} = P \):
\[\n\lambda_{\text{min}} = P = \frac{1}{R_H}\n\]
Then, \( \lambda_{\text{max}} \) is:
\[\n\lambda_{\text{max}} = \frac{4}{3} \times \lambda_{\text{min}} = \frac{4}{3} \times P\n\]
Step 4: Conclusion
The maximum wavelength is \( \frac{4P}{3} \).
Thus, the answer is:
\[\n\boxed{(A)} \, \frac{4P}{3}\n\]