The polar equation provided is:
\[ r \cos \theta = 2a \sin^2 \theta. \]
Step 1: Conversion to Cartesian coordinates.
Recall the following polar-to-Cartesian transformations:
\[ x = r \cos \theta, \quad y = r \sin \theta, \quad r^2 = x^2 + y^2. \]
Substitute \(x = r \cos \theta\) into the initial equation:
\[ x = 2a \sin^2 \theta. \]
Using \(\sin^2 \theta = \frac{y^2}{r^2}\), substitute:
\[ x = 2a \cdot \frac{y^2}{r^2}. \]
Substitute \(r^2 = x^2 + y^2\):
\[ x = 2a \cdot \frac{y^2}{x^2 + y^2}. \]
Step 2: Equation simplification.
Multiply by \(x^2 + y^2\):
\[ x(x^2 + y^2) = 2ay^2. \]
Expand:
\[ x^3 + xy^2 = 2ay^2. \]
Rearrange:
\[ x^3 = y^2(2a - x). \]
Final Result: The equation of the curve is:
\[ \boxed{x^3 = y^2(2a - x)}. \]