\( \frac{2\pi \lambda}{a}\)
\( \frac{2\pi a}{\lambda}\)
\( \frac{\lambda}{a}\)
\( \frac{a}{\lambda}\)
The standard equation for a traveling wave is:
y = A sin(<i>kx</i> − ωt)
Here:
A represents the amplitude.
k denotes the wave number ($k = \frac{2\pi}{\lambda}$).
ω signifies the angular frequency ($\omega = 2\pi f$).
f is the frequency.
Matching this to the provided equation: y = C sin($\frac{2\pi}{\lambda}$(<i>at</i> − x)), we find ω = $\frac{2\pi a}{\lambda}$.
Given that ω = 2πf: 2πf = $\frac{2\pi a}{\lambda}$
$f = \frac{a}{\lambda}$