Step 1: Define the Problem
Two observers, \(A\) and \(B\), are 10 km apart. A balloon is directly above point \(P\). \(\angle APB=30^\circ\) for the observer farthest from the balloon, and \(\angle BPA=60^\circ\) for the nearer observer (larger angle means closer).
Let \(AP=d\), so \(BP=d-10\), and let the height of the balloon be \(h\).
Step 2: Apply the Tangent Function
From observer \(A\): \(\tan 30^\circ=\dfrac{h}{d}\), so \(h=\dfrac{d}{\sqrt{3}}\).
From observer \(B\): \(\tan 60^\circ=\dfrac{h}{d-10}\), so \(h=(d-10)\sqrt{3}\).
Step 3: Solve for Height
Equate the two expressions for \(h\): \(\dfrac{d}{\sqrt{3}}=(d-10)\sqrt{3}\). This simplifies to \(d=3(d-10)\), then \(2d=30\), and finally \(d=15\).
Therefore, \(h=\dfrac{15}{\sqrt{3}}=5\sqrt{3}\ \text{km}\).