Step 1: Define the variables
Let observers be \(A\) and \(B\), with distance \(AB=10\) km. The balloon is vertically above point \(P\). \(\angle APB=30^\circ\) at \(A\) and \(\angle BP A=60^\circ\) at \(B\). Let \(AP=d\), \(BP=d-10\), and the height be \(h\).
Step 2: Apply the tangent function
From \(A\): \(\tan 30^\circ=\dfrac{h}{d}\), so \(h=\dfrac{d}{\sqrt{3}}\).
From \(B\): \(\tan 60^\circ=\dfrac{h}{d-10}\), therefore \(h=(d-10)\sqrt{3}\).
Step 3: Solve for \(h\)
Equating the expressions for \(h\): \(\dfrac{d}{\sqrt{3}}=(d-10)\sqrt{3}\), which simplifies to \(d=3(d-10)\), then \(2d=30\), so \(d=15\).
Hence \(h=\dfrac{15}{\sqrt{3}}=5\sqrt{3}\ \text{km}\).
\[
\boxed{h=5\sqrt{3}\ \text{km}}
\]