Step 1: Problem Definition
Determine the
longitudinal strain in the wire when the elevator accelerates upwards with \( a = 2 \, \text{m/s}^2 \). Strain relates to stress, which relates to the force on the wire.
Step 2: Force Calculation
The force has two components:
1. Weight of the 10 kg load.
2. Force from the elevator's acceleration.
Total force \( F \) is:
\[
F = m(g + a)
\]
Where:
- \( m = 10 \, \text{kg} \),
- \( g = 10 \, \text{m/s}^2 \),
- \( a = 2 \, \text{m/s}^2 \).
Therefore:
\[
F = 10 \times (10 + 2) = 10 \times 12 = 120 \, \text{N}
\]
Step 3: Stress Calculation
Stress \( \sigma \) is force per unit area:
\[
\sigma = \frac{F}{A}
\]
Where:
- \( A = 2 \, \text{cm}^2 = 2 \times 10^{-4} \, \text{m}^2 \).
Thus:
\[
\sigma = \frac{120}{2 \times 10^{-4}} = 6 \times 10^5 \, \text{N/m}^2
\]
Step 4: Strain Calculation
Longitudinal strain \( \epsilon \) relates to stress and Young's modulus \( Y \):
\[
\epsilon = \frac{\sigma}{Y}
\]
Where:
- \( Y = 2.0 \times 10^{11} \, \text{N/m}^2 \).
Substituting values:
\[
\epsilon = \frac{6 \times 10^5}{2.0 \times 10^{11}} = 3 \times 10^{-6}
\]
Step 5: Conclusion
The longitudinal strain is \( 3 \times 10^{-6} \).
Therefore, the correct answer is:
\[
\boxed{(D)} \, 2 \times 10^{-6}
\]