Question:medium

Let \( f(x) \) be defined as: \[f(x) = \begin{cases} 3 - x, & x<-3 \\ 6, & -3 \leq x \leq 3 \\ 3 + x, & x>3 \end{cases}\]
Let \( \alpha \) be the number of points of discontinuity of \( f(x) \) and \( \beta \) be the number of points where \( f(x) \) is not differentiable. Then, \( \alpha + \beta \) is:

Show Hint

A function is continuous at a point if the left-hand limit, right-hand limit, and function value are equal. Differentiability requires the left-hand derivative and right-hand derivative to be equal.
Updated On: Nov 26, 2025
  • 6
  • 3
  • 2
  • 0
Hide Solution

The Correct Option is C

Solution and Explanation

Step 1: Continuity Verification At \( x = -3 \) \[\lim\limits_{h \to 0} f(-3 - h) = \lim\limits_{h \to 0} (3 - (-3 - h)) = 6\]\[\lim\limits_{h \to 0} f(-3 + h) = 6\]\[f(-3) = 6\]As LHL = RHL = \( f(-3) \), \( f(x) \) exhibits continuity at \( x = -3 \).At \( x = 3 \) \[\lim\limits_{h \to 0} f(3 - h) = 6\]\[\lim\limits_{h \to 0} f(3 + h) = \lim\limits_{h \to 0} (3 + (3 + h)) = 6\]\[f(3) = 6\]As LHL = RHL = \( f(3) \), \( f(x) \) exhibits continuity at \( x = 3 \). Therefore, \( \alpha = 0 \) (indicating no discontinuities).
Step 2: Differentiability Verification
At \( x = -3 \) \[\lim\limits_{h \to 0} \frac{f(-3 + h) - f(-3)}{h} = \frac{6 - 6}{h} = 0\]\[\lim\limits_{h \to 0} \frac{f(-3 - h) - f(-3)}{-h} = \frac{(3 - (-3 - h)) - 6}{-h} = \frac{6 + h - 6}{-h} = -1\]Since LHD \( eq \) RHD, \( f(x) \) is not differentiable at \( x = -3 \).At \( x = 3 \) \[\lim\limits_{h \to 0} \frac{f(3 + h) - f(3)}{h} = \frac{(3 + (3 + h)) - 6}{h} = \frac{6 + h - 6}{h} = 1\]\[\lim\limits_{h \to 0} \frac{f(3 - h) - f(3)}{-h} = \frac{6 - 6}{-h} = 0\]Since LHD \( eq \) RHD, \( f(x) \) is not differentiable at \( x = 3 \). Thus, \( \beta = 2 \) (representing non-differentiability at \( x = -3 \) and \( x = 3 \)).Final Calculation: \[\alpha + \beta = 0 + 2 = 2\]
Was this answer helpful?
2