Step 1: Continuity Verification At \( x = -3 \) \[\lim\limits_{h \to 0} f(-3 - h) = \lim\limits_{h \to 0} (3 - (-3 - h)) = 6\]\[\lim\limits_{h \to 0} f(-3 + h) = 6\]\[f(-3) = 6\]As LHL = RHL = \( f(-3) \), \( f(x) \) exhibits continuity at \( x = -3 \).At \( x = 3 \) \[\lim\limits_{h \to 0} f(3 - h) = 6\]\[\lim\limits_{h \to 0} f(3 + h) = \lim\limits_{h \to 0} (3 + (3 + h)) = 6\]\[f(3) = 6\]As LHL = RHL = \( f(3) \), \( f(x) \) exhibits continuity at \( x = 3 \). Therefore, \( \alpha = 0 \) (indicating no discontinuities).
Step 2: Differentiability Verification At \( x = -3 \) \[\lim\limits_{h \to 0} \frac{f(-3 + h) - f(-3)}{h} = \frac{6 - 6}{h} = 0\]\[\lim\limits_{h \to 0} \frac{f(-3 - h) - f(-3)}{-h} = \frac{(3 - (-3 - h)) - 6}{-h} = \frac{6 + h - 6}{-h} = -1\]Since LHD \( eq \) RHD, \( f(x) \) is not differentiable at \( x = -3 \).At \( x = 3 \) \[\lim\limits_{h \to 0} \frac{f(3 + h) - f(3)}{h} = \frac{(3 + (3 + h)) - 6}{h} = \frac{6 + h - 6}{h} = 1\]\[\lim\limits_{h \to 0} \frac{f(3 - h) - f(3)}{-h} = \frac{6 - 6}{-h} = 0\]Since LHD \( eq \) RHD, \( f(x) \) is not differentiable at \( x = 3 \). Thus, \( \beta = 2 \) (representing non-differentiability at \( x = -3 \) and \( x = 3 \)).Final Calculation: \[\alpha + \beta = 0 + 2 = 2\]