Step 1: The function \( f(x) = |x^2 - 1| \) is the absolute value of \( x^2 - 1 \). To analyze it, consider two cases:
\[ f(x) = \begin{cases} x^2 - 1 & \text{if } x^2 \geq 1, \\ 1 - x^2 & \text{if } x^2 < 1. \end{cases} \]
This piecewise function represents a parabola reflected across the x-axis when \( |x| < 1 \) and an upward-opening parabola when \( |x| \geq 1 \).
Step 2: Local minima are the function's lowest points. \( f(x) = 0 \) when \( x = \pm 1 \) because:
\[ f(x) = |x^2 - 1| = 0 \quad \text{when } x^2 - 1 = 0 \quad \implies \quad x = \pm 1. \]
At \( x = 1 \) and \( x = -1 \), the function changes from decreasing to increasing, thus representing local minima.
Step 3: Local maxima are the function's highest points within an interval. The function reaches a local maximum at \( x = 0 \):
\[ f(0) = |0^2 - 1| = | -1| = 1. \]
The function \( f(x) \) decreases on \( (-1, 1) \) and increases after \( x = \pm 1 \), making \( x = 0 \) a local maximum.
Step 4: Consequently, \( f(x) \) has local minima at \( x = \pm 1 \) and a local maximum at \( x = 0 \).