To analyze the functions \( f \), \( g \), and their sum \( f + g \), we start with their definitions:
\( f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 0 & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \end{cases} \)
\( g(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 1 & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \end{cases} \)
Both functions' values depend on whether \( x \) is rational (\( \mathbb{Q} \)) or irrational (\( \mathbb{R} \setminus \mathbb{Q} \)).
Step 1: Continuity of \( f \) and \( g \) at \( x = \frac{2}{3} \):
\( f \) and \( g \) are discontinuous on \([0, 1]\) due to the density of \(\mathbb{Q}\) in \(\mathbb{R}\), causing abrupt value changes.
Step 2: Continuity of \( f + g \):
Consider both cases for \( f(x) + g(x) \):
- If \( x \in \mathbb{Q} \), \( f(x) = 1 \) and \( g(x) = 0 \), hence \( f(x) + g(x) = 1 \).
- If \( x \in \mathbb{R} \setminus \mathbb{Q} \), \( f(x) = 0 \) and \( g(x) = 1 \), so \( f(x) + g(x) = 1 \).
Therefore, \( f(x) + g(x) = 1 \) for all \( x \in [0, 1] \), which is continuous everywhere because its value is constant.
Conclusion:
\( f + g \) is continuous at \( x = \frac{2}{3} \), while \( f \) and \( g \) are discontinuous at \( x = \frac{2}{3} \).