Step 1: Identify the equilibrium.
The Bowler's solution contains a base (B\(^-\)) and its conjugate acid (HB) at equal concentrations, forming a buffer. The pOH of this buffer is: \[ \text{pOH} = \text{p}K_\text{b} + \log \left( \frac{[\text{HB}]}{[\text{B}^-]} \right) \] Step 2: Apply the given data.
Since \([B^-] = [HB]\), \[ \log \left( \frac{[\text{HB}]}{[\text{B}^-]} \right) = \log(1) = 0 \] Therefore, \[ \text{pOH} = \text{p}K_\text{b} \] We know: \[ \frac{K_\text{B}}{[\text{B}^-]} = 10^{-10} \Rightarrow K_\text{B} = 10^{-10} \times [\text{B}^-] \] As \([B^-]\) cancels out when \([B^-] = [HB]\), we have: \[ K_b = 10^{-10} \Rightarrow \text{p}K_b = 10 \] Thus, \[ \text{pOH} = 10 \Rightarrow \text{pH} = 14 - \text{pOH} = 14 - 10 = 4 \]