Step 1: Problem Setup.
Given: two composite functions:
\( g(f(x)) = |\sin x| \)
\( f(g(x)) = (\sin \sqrt{x})^2 \)
Goal: find \( f(x) \) and \( g(x) \) that satisfy both equations.
Step 2: Test Option (A).
Consider option (A): \( f(x) = \sin^2 x \), \( g(x) = \sqrt{x} \).
Calculate \( g(f(x)) \):
\[
g(f(x)) = g(\sin^2 x) = \sqrt{\sin^2 x}.
\]
Since \( \sqrt{\sin^2 x} = |\sin x| \), we get:
\[
g(f(x)) = |\sin x|,
\]
which matches the first equation.
Calculate \( f(g(x)) \):
\[
f(g(x)) = f(\sqrt{x}) = \sin^2 \sqrt{x}.
\]
Verify if \( \sin^2 \sqrt{x} = (\sin \sqrt{x})^2 \). They are the same.
\[
f(g(x)) = \sin^2 \sqrt{x} = (\sin \sqrt{x})^2,
\]
which matches the second equation.
Step 3: Domain Check.
\( g(x) = \sqrt{x} \) requires \( x \geq 0 \). Both \( |\sin x| \) and \( (\sin \sqrt{x})^2 \) are defined for \( x \geq 0 \). Consistent.
Option (A) is a valid solution.
Step 4: Check Other Options.
% Option
(B) \( f(x) = \sin x \), \( g(x) = |x| \):
\( g(f(x)) = g(\sin x) = |\sin x| \)
\( f(g(x)) = f(|x|) = \sin |x| \), not \( (\sin \sqrt{x})^2 \).
% Option
(C) \( f(x) = x^2 \), \( g(x) = \sin \sqrt{x} \):
\( g(f(x)) = g(x^2) = \sin \sqrt{x^2} = \sin |x| \), not \( |\sin x| \) unless \( x \geq 0 \),
\( f(g(x)) = f(\sin \sqrt{x}) = (\sin \sqrt{x})^2 \), which matches, but \( g(f(x)) \) fails.
% Option
(D) \( f(x) = |x| \), \( g(x) = \sin x \):
\( g(f(x)) = g(|x|) = \sin |x| \), not \( |\sin x| \).
\( f(g(x)) = f(\sin x) = |\sin x| \)
Step 5: Conclusion.
Option (A) satisfies both equations, thus it is the solution.