Given \( f(x) = \frac{3x - 4}{2x - 3} \), we need to find \( f(f(f(x))) \).\n\n
Step 1: Calculate \( f(f(x)) \).
\n\nSubstitute \( f(x) = \frac{3x - 4}{2x - 3} \) into itself: \[ f(f(x)) = f\left( \frac{3x - 4}{2x - 3} \right) = \frac{3\left( \frac{3x - 4}{2x - 3} \right) - 4}{2\left( \frac{3x - 4}{2x - 3} \right) - 3}. \]\nSimplifying:\n\[ \text{Numerator: } 3\left( \frac{3x - 4}{2x - 3} \right) - 4 = \frac{9x - 12}{2x - 3} - 4 = \frac{9x - 12 - 4(2x - 3)}{2x - 3} = \frac{9x - 12 - 8x + 12}{2x - 3} = \frac{x}{2x - 3}. \]\n\[ \text{Denominator: } 2\left( \frac{3x - 4}{2x - 3} \right) - 3 = \frac{6x - 8}{2x - 3} - 3 = \frac{6x - 8 - 3(2x - 3)}{2x - 3} = \frac{6x - 8 - 6x + 9}{2x - 3} = \frac{1}{2x - 3}. \]\nTherefore:\n\[ f(f(x)) = \frac{\frac{x}{2x - 3}}{\frac{1}{2x - 3}} = x. \]\n\n
Step 2: Calculate \( f(f(f(x))) \).
\n\nSince \( f(f(x)) = x \), apply \( f \): \[ f(f(f(x))) = f(x) = \frac{3x - 4}{2x - 3}. \]\n\nThe value of \( f(f(f(x))) \) is \( \frac{3x - 4}{2x - 3} \), which is \( f(x) \).\n\n
Step 3: Conclusion.
\n\nThe answer is \( \frac{3x - 4}{2x - 3} \), matching option (D).