Step 1: Apply the inverse function differentiation formula. \n\nRemember that if \( f \) is the inverse of \( g \), then:\n\[\nf'(x) = \frac{1}{g'\left( f(x) \right)}\n\]\n\nWe are given:\n\[\ng'(x) = \frac{1}{1+x^n}\n\]\n\nTherefore:\n\[\ng'\left( f(x) \right) = \frac{1}{1+\{ f(x) \}^n}\n\]\n\n Step 2: Substitute into the formula for \( f'(x) \). \n\nHence:\n\[\nf'(x) = \frac{1}{\frac{1}{1+\{ f(x) \}^n}} = 1+\{ f(x) \}^n\n\]\n\n Step 3: State the final answer. \n\nThus, \( f'(x) = 1+\{ f(x) \}^n \).