Question:medium

If \( f \) is the inverse function of \( g \) and \( g'(x) = \frac{1}{1+x^n} \), then the value of \( f'(x) \) is:

Show Hint

For inverse functions, always remember: \[ f'(x) = \frac{1}{g'(f(x))} \] where \( g \) is the original function and \( f \) is its inverse.
Updated On: Nov 28, 2025
  • \( 1 + \{ f(x) \}^n \)
  • \( 1 - \{ f(x) \}^n \)
  • \( \{ 1 + f(x) \}^n \)
  • \( \{ f(x) \}^n \)
Hide Solution

The Correct Option is A

Solution and Explanation


Step 1: Apply the inverse function differentiation formula.
\n\nRemember that if \( f \) is the inverse of \( g \), then:\n\[\nf'(x) = \frac{1}{g'\left( f(x) \right)}\n\]\n\nWe are given:\n\[\ng'(x) = \frac{1}{1+x^n}\n\]\n\nTherefore:\n\[\ng'\left( f(x) \right) = \frac{1}{1+\{ f(x) \}^n}\n\]\n\n
Step 2: Substitute into the formula for \( f'(x) \).
\n\nHence:\n\[\nf'(x) = \frac{1}{\frac{1}{1+\{ f(x) \}^n}} = 1+\{ f(x) \}^n\n\]\n\n
Step 3: State the final answer.
\n\nThus, \( f'(x) = 1+\{ f(x) \}^n \).
Was this answer helpful?
0