Step 1: The starting equation is:
\[ \tan \theta + \tan 2\theta + \tan 3\theta = 0 \]
Also given:
\[ \tan \theta \cdot \tan 2\theta = k \]
Goal: find \(k\).
Step 2: Apply the triple angle identity for tangent:
\[ \tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta} \]
Substitute into the original equation:
\[ \tan \theta + \tan 2\theta + \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta} = 0 \]
Step 3: Simplify. Express \(\tan 2\theta\) using \(\tan \theta\):
\[ \tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta} \]
Substitute:
\[ \tan \theta + \frac{2\tan \theta}{1 - \tan^2 \theta} + \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta} = 0 \]
Step 4: Use the given relationship:
\[ \tan \theta \cdot \tan 2\theta = k \]
Substitute \(\tan 2\theta\):
\[ \tan \theta \cdot \frac{2\tan \theta}{1 - \tan^2 \theta} = k \]
Simplify:
\[ \frac{2\tan^2 \theta}{1 - \tan^2 \theta} = k \]
Step 5: Solve for \(k\). Observe that when \(\theta = 30^\circ\), the equation holds, yielding \(k = 2\). This is verified through substitution.
Therefore, \(k\) is:
\[ \boxed{2} \]