Question:medium

A quadratic equation \(x^2+bx+c=0\) has two real roots. If the difference between the reciprocals of the roots is \(\frac{1}{3}\) , and the sum of the reciprocals of the squares of the roots is \(\frac{5}{9}\) , then the largest possible value of \((b+c)\) is

Updated On: Nov 25, 2025
  • 7
  • 8
  • 9
  • None of Above
Hide Solution

The Correct Option is C

Solution and Explanation

Let \(\alpha\) and \(\beta\) be the roots of the quadratic equation \(x^2 + bx + c = 0\).

Given:

  • \(\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{5}{9}\)
  • \(\left( \frac{1}{\alpha} - \frac{1}{\beta} \right)^2 = \frac{1}{9}\)

Step 1: Determine \(\alpha\beta\)

Using the identity \( \left( \frac{1}{\alpha} - \frac{1}{\beta} \right)^2 = \frac{1}{\alpha^2} + \frac{1}{\beta^2} - \frac{2}{\alpha\beta} \), substitute the given values: \( \frac{1}{9} = \frac{5}{9} - \frac{2}{\alpha\beta} \). Rearranging yields \( \frac{2}{\alpha\beta} = \frac{4}{9} \), which simplifies to \( \alpha\beta = \frac{9}{2} \).

Step 2: Determine \(\alpha^2 + \beta^2\)

Using the identity \( \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} \), and substituting the given value and the derived \(\alpha\beta\): \( \frac{5}{9} = \frac{\alpha^2 + \beta^2}{(\frac{9}{2})^2} \). This gives \( \alpha^2 + \beta^2 = \frac{5}{9} \cdot \frac{81}{4} = \frac{405}{36} = \frac{45}{4} \).

Step 3: Find \((\alpha + \beta)^2\)

Using the identity \( \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \), substitute known values: \( \frac{45}{4} = (\alpha + \beta)^2 - 2 \cdot \frac{9}{2} \). This simplifies to \( \frac{45}{4} = (\alpha + \beta)^2 - 9 \), so \( (\alpha + \beta)^2 = \frac{45}{4} + 9 = \frac{81}{4} \). Therefore, \( \alpha + \beta = \pm \frac{9}{2} \).

Step 4: Relate to coefficients \(b\) and \(c\)

From Vieta's formulas, \( \alpha + \beta = -b \) and \( \alpha\beta = c \). Thus, \( b = -(\alpha + \beta) = \mp \frac{9}{2} \) and \( c = \frac{9}{2} \).

Step 5: Calculate the maximum value of \(b + c\)

The expression to maximize is \( b + c = -(\alpha + \beta) + \alpha\beta \). To maximize this, we select the value of \( \alpha + \beta \) that yields the largest sum. If \( \alpha + \beta = -\frac{9}{2} \), then \( b = \frac{9}{2} \). In this case, \( b + c = \frac{9}{2} + \frac{9}{2} = \boxed{9} \).

Final Answer: Option (C): 9

Was this answer helpful?
2