Step 1: Problem Definition
A cylinder contains helium gas at standard temperature and pressure (STP). The cylinder's volume is 44.8 litres. Calculate the heat needed to increase the gas temperature by 20.0°C.
Step 2: Moles Calculation
At STP, 1 mole of an ideal gas occupies 22.4 litres. The number of moles (\( n \)) of helium in 44.8 litres is: \[ n = \frac{44.8 \, \text{litres}}{22.4 \, \text{litres/mol}} = 2 \, \text{moles}. \]
Step 3: Molar Heat Capacity at Constant Volume
For monatomic helium, the molar heat capacity at constant volume (\( C_v \)) is: \[ C_v = \frac{3}{2} R. \]
Using \( R = 8.3 \, \text{JK}^{-1} \text{mol}^{-1} \): \[ C_v = \frac{3}{2} \times 8.3 = 12.45 \, \text{JK}^{-1} \text{mol}^{-1}. \]
Step 4: Heat Required Calculation
The heat (\( Q \)) needed for a temperature increase \( \Delta T = 20.0°C \) is: \[ Q = n C_v \Delta T. \]
Substituting values: \[ Q = 2 \times 12.45 \times 20 = 498 \, \text{J}. \]
Step 5: Result Verification
The calculated heat is 498 J, matching option (C). Final Answer: The required heat is 498 J.